Cada vez mais as decisões nas empresas têm que ser fundamentadas em evidências e menos nos instintos ou intuições dos gestores. É claro que a experiência e conhecimento pessoal de cada gestor vão sempre influenciar as suas decisões, mas essencialmente, devem ser os factos a estar na base das decisões.
E de onde vêm estes factos? Os factos, e o conhecimento que os sustenta, resultam sobretudo dos dados de que as organizações dispõem e de como os organizam, ou seja, como transformam os dados em informação e posteriormente, em conhecimento e sabedoria.
Contudo, se os dados tiverem o que tecnicamente se chama de falta de “qualidade”, as decisões que possam advir de tomadas de decisão com base nos mesmos podem revelar-se incorretas. Assim sendo, como devem ser as fontes de dados com qualidade? Vejamos, devem ser:
1. Exatas - A amostra utilizada deve refletir a população.
Por exemplo, para se estudar a evolução de preços não se pode simplesmente estudar uma pequena amostra de dados do hotel ou de alguns hotéis de uma cadeia. Deve ser utilizada a totalidade dos dados disponíveis ou uma amostra estatisticamente válida.
2. Confiáveis - Os dados não sofrem alterações se forem extraídos em múltiplos períodos.
Por exemplo, se vamos analisar as reservas para um determinado período de tempo já decorrido, e retirarmos duas amostras em datas diferentes, os dados constantes nas duas amostras sofrem modificações? Não deveriam sofrer.
3. Precisas - Deve conter a informação necessária para o problema em estudo na forma mais atómica possível.
Por exemplo, se o problema é o estudo de padrões de cancelamentos de reservas por nacionalidades, os dados deverão estar disponíveis por reserva e não agregados por segmento, canal de distribuição ou outro atributo.
4. Imparciais - Os dados extraídos não devem ser afetados por qualquer critério que possa colocar em causa a sua validade estatística.
Por exemplo, se para prever o preço médio futuro o analista não incluir na amostra de dados a utilizar os dados das reservas de um determinado operador ou de uma nacionalidade, vai influenciar os modelos criados.
5. Válidas - Deve ser garantido que foram implementados processos adequados para extração, organização e análise dos dados.
Por exemplo, se foram extraídos dados que dizem que num determinado ano houve um determinado número de room-nights ocupadas, esse número deve ser exatamente o mesmo que o PMS do hotel indica para essa mesma medida.
6. Apropriadas - Os dados a usar devem ser adequados ao problema em estudo.
Por exemplo, se o objetivo for estudar os no-shows de um hotel e os dados em causa não permitirem distinguir os no-shows dos cancelamentos, a fonte de dados não é apropriada para o problema em estudo.
7. Oportunas - Os dados devem ser relativos ao período em estudo e devem conter todas as possíveis observações para esse período.
Por exemplo, se o que se pretende é desenvolver um modelo de overbooking para os próximos 5 dias, mas a fonte de dados utilizada é apenas atualizada uma vez por semana, não deve ser utilizada.
Posto isto, a realidade é que quando bem trabalhados, os dados conseguem dar-nos respostas altamente confiáveis às perguntas que geram os resultados que procuramos. No entanto é imperativo atender à sua qualidade para que essas respostas sejam também as mais certas.