Machine Learning é uma das buzzwords do momento – mas o que é exatamente? São várias as definições possíveis e variam de acordo com o propósito e tema associado, mas, de uma forma geral, todas convergem para a ideia de que é um dos métodos para chegar à Inteligência Artificial (a capacidade dada a máquinas para imitarem comportamento humano inteligente). Assim, o Machine Learning diz respeito ao desenvolvimento de programas computacionais que automaticamente sejam capazes de melhorar e aprender com a experiência, sem serem especificamente instruídos para o fazer.
Contudo, este não é um conceito do futuro. Não se cinge a carros que dispensam condutores, robôs que irão substituir humanos ou gadgets ao estilo Star Trek. A realidade é que diariamente já utilizamos Machine Learning nas nossas vidas e muitas vezes nem damos por isso. De cada vez que usamos o Google.com para fazer qualquer tipo de busca, o Google, através da nossa localização, das nossas pesquisas anteriores e dos nossos dados das redes sociais, aplica Machine Learning para nos dar a resposta mais adequada. Os nossos telemóveis, com os seus inúmeros sensores, são capazes de prever o que estamos a fazer (se estamos sentados, a correr, a andar, etc.), registando as nossas atividades. Os mesmos telemóveis prevêem o que estamos a escrever para sugerir palavras completas... Entre muitas outras utilizações diárias que fazemos de Machine Learning.
Já em aplicações para negócios, o Machine Learning é usado habitualmente para construir modelos/algoritmos preditivos e de análise de dados, sendo neste caso normalmente designado como Predictive Analytics.
O Machine Learning é tipicamente implementado para atender a três tipos de problemas:
-
Aprendizagem supervisionada: quando a aplicação faz uso de um conjunto de dados com os seus inputs e já desejados outputs (etiquetas), com o objetivo de aprender com os exemplos (p.ex. usando variáveis de reservas, incluindo quais foram canceladas é possível construir um modelo que seja capaz de prever que reservas serão canceladas).
-
Aprendizagem não supervisionada: quando o conjunto de dados atribuído à aplicação inclui apenas inputs, sendo a criação dos outputs a tarefa a desempenhar em si. Neste caso, a descoberta de padrões no conjunto de dados é o que constitui os outputs (p.ex. a partir do conjunto de dados das reservas construir um número fixo de grupos de clientes – clusters - baseados nos inputs existentes, sem definir quaisquer pré-requisitos).
-
Aprendizagem reforçada: quando a aplicação interage, ou recebe feedback por ter atingido um determinado objetivo com o qual é suposto aprender (p.ex. se diariamente a aplicação prevê e define que determinadas reservas serão canceladas e essas reservas acabam por não sofrer cancelamento, esta experiência deve ser usada para aperfeiçoar o modelo).
Assim, de uma forma simplista, os principais problemas a que se aplica Machine Learning são:
-
Classificação: quando o output é um valor discreto, uma classe (ex: a reserva vai ser “cancelada” ou “não cancelada”).
-
Regressão: quando o output é um valor contínuo (ex: a que preço deve ser o alojamento vendido).
-
Agrupamento: quando os outputs não são conhecidos e os inputs devem ser divididos em grupos (ex: agrupamento de clientes).
Há vários artigos desenvolvidos sobre como o Machine Learning já impacta ou irá impactar a Hotelaria. Ficam alguns exemplos (em inglês):
Um aspeto em comum na maioria destes artigos é a alusão que é no Revenue Management que, a curto prazo, o Machine Learning terá mais impacto. A previsão da procura, a previsão de receita, a segmentação de clientes, a definição de tarifas e a previsão de cancelamento de reservas são apenas algumas das tarefas em que se notará esse impacto. Todavia, outras tarefas como a previsão de check-ins e check-outs por hora, a rotatividade de funcionários ou necessidade de funcionários por horas, entre muitas outras, já começam também a ser ajudadas pelo Machine Learning.
De momento, são maioritariamente cadeias internacionais e reconhecidas marcas hoteleiras que estão a tirar partido das vantagens do Machine Learning. Apesar de muitas ainda se encontrarem numa fase inicial de adopção, coloca-se a questão se tal como em outras indústrias, o Machine Learning se tornará omnipresente em todos os hotéis. Como sempre, os primeiros hotéis e marcas a adoptá-lo têm uma vantagem competitiva... Por isso mesmo, se ainda não está aplicar, pelo menos deve começar a pensar no assunto.